
Resilience-aware Mixed-criticality DAG Scheduling on Multi-cores for Autonomous Systems
Authors: Jie Zou, Xiaotian Dai, John A. McDermid

Abstract: Advanced driver-assistance and semi-autonomous systems

represent the next major computing demand for road vehicles, which are

complex and safety-critical with strict real-time and resource constraints and

have a deep processing pipeline with strong dependencies between different

functions. Further, tasks with different criticalities share the same hardware.

This work proposed a novel mixed-criticality DAG-based multi-core static

scheduling method considering low critical tasks' survivability and

precedence constraints between tasks with different criticalities. This

produces a consistent schedule for different system modes enabling task-

level mode change and improving the resilience of the system.

3. Mixed-Criticality Task Model
We adopt dual-criticality system considering criticality-dependent WCET

estimation (i.e., for HI critical tasks C(LO) < C(HI)). A task 𝜏!can be defined by

the tuples (𝑇!, 𝐷!, 𝐶!(HI), 𝐶!(LO), 𝐿!).

HISE Group

4.1 Schedule Calculation
Step 1. Schedule calculation in HI mode:

The schedule should be generated based on the HI mode task

behaviour to guarantee the execution of HI tasks. The existence of LO

criticality tasks can assist in anchoring the target schedule region of LO

tasks in LO mode.

4. Consistent Mixed-Criticality DAGs Scheduling

Fig. 1: Mixed-criticality DAGs example (Green nodes: LO-tasks; Red
nodes: HI-tasks)

Fig. 3: The consistent schedule from step 2

Department of Computer Science, University of York

• Most static scheduling work considering task dependencies does not

consider the survivability of low criticality tasks.

• The schedules for high and low modes are different. More efforts are

needed to check the safety of schedules during mode change.

1. Problems of Existing Static Scheduling Methods

The benefits brought by our method will be further verified based on

large scale simulation. Furthermore, it will be applied to more realistic

examples – as we are doing with a mobile delivery robot.

5. Future Work Plan

Email: jie.zou@York.ac.uk, xiaotian.dai@York.ac.uk, john.mcdermid@york.ac.uk

2. Contribution of This Work
• Generates one consistent schedule considering the survivability of LO tasks

to realise task-level mode change and significantly improves system

resilience.

• Reduces the complexity of task-level mode change, which can accelerate

the recovery of specific impacted LO task.

Fig. 2: The schedule generated by step 1

Start from the last time point of the hyperperiod and the last layer of DAGs in

the system. All HI critical tasks can be executed as late as possible and

scheduled start time will be kept the same in both system modes.

Fig. 4: ISA Robot from AAIP[1] Project

Step 2. Consistent schedule generation:

Based on the schedule calculated in step 1, all tasks are performed with

LO mode behaviour in this step. The execution time of HI tasks is

shortened, and more time is freed to schedule LO tasks.

[1] Assuring Autonomy International Programme (AAIP) https://www.york.ac.uk/assuring-autonomy/about/

